sicp-ex-2.56



<< Previous exercise (2.55) | Index | Next exercise (2.57) >>


NTeGrotenhuis

Show how to extend the basic differentiator to handle more kinds of expressions. For instance, implement the differentiation rule

d(u^n)/dr = nu^(n-1)(du/dr)

by adding a new clause to the deriv program and defining appropriate procedures exponentiation?, base, exponent, and make-exponentiation. (You may use the symbol ** to denote exponentiation.) Build in the rules that anything raised to the power 0 is 1 and anything raised to the power 1 is the thing itself.

code given in the book:

  (define (deriv exp var) 
   (cond ((number? exp) 0) 
         ((variable? exp) 
          (if (same-variable? exp var) 1 0)) 
         ((sum? exp) 
          (make-sum (deriv (addend exp) var) 
                    (deriv (augend exp) var))) 
         ((product? exp) 
          (make-sum 
            (make-product (multiplier exp) 
                          (deriv (multiplicand exp) var)) 
            (make-product (deriv (multiplier exp) var) 
                          (multiplicand exp)))) 
         (else 
          (error "unknown expression type -- DERIV" exp)))) 
  
  (define (variable? x) (symbol? x)) 
  
  (define (same-variable? v1 v2) 
   (and (variable? v1) (variable? v2) (eq? v1 v2))) 
  
  (define (make-sum a1 a2) 
   (cond ((=number? a1 0) a2) 
         ((=number? a2 0) a1) 
         ((and (number? a1) (number? a2)) (+ a1 a2)) 
         (else (list '+ a1 a2)))) 
  
  (define (make-product m1 m2) 
   (cond ((or (=number? m1 0) (=number? m2 0)) 0) 
         ((=number? m1 1) m2) 
         ((=number? m2 1) m1) 
         ((and (number? m1) (number? m2)) (* m1 m2)) 
         (else (list '* m1 m2)))) 
   
  (define (=number? exp num) 
   (and (number? exp) (= exp num))) 
  
  (define (sum? x) 
   (and (pair? x) (eq? (car x) '+))) 
  
  (define (addend s) (cadr s)) 
  
  (define (augend s) (caddr s)) 
  
  (define (product? x) 
   (and (pair? x) (eq? (car x) '*))) 
  
  (define (multiplier p) (cadr p)) 
  
  (define (multiplicand p) (caddr p)) 

First add this code to (derive exp var) to add differentiation of exponentiations.

 ((exponentiation? exp) 
          (make-product  
               (make-product (exponent exp)  
                      (make-exponentiation (base exp)  
                           (make-sum(exponent exp) '-1))) 
               (deriv  (base exp) var))) 

The end product is:

 (define (deriv exp var) 
   (cond ((number? exp) 0) 
         ((variable? exp) 
          (if (same-variable? exp var) 1 0)) 
         ((sum? exp) 
          (make-sum (deriv (addend exp) var) 
                    (deriv (augend exp) var))) 
         ((product? exp) 
          (make-sum 
            (make-product (multiplier exp) 
                          (deriv (multiplicand exp) var)) 
            (make-product (deriv (multiplier exp) var) 
                          (multiplicand exp)))) 
         ((exponentiation? exp) 
          (make-product  
               (make-product (exponent exp)  
                      (make-exponentiation (base exp)  
                            (if (number? (exponent exp))  
                                 (- (exponent exp) 1) 
                                 (' (- (exponent exp) 1))))) 
               (deriv  (base exp) var))) 
         (else 
          (error "unknown expression type -- DERIV" exp)))) 

Next (define (exponentiation? exp))

 (define (exponentiation? exp) 
   (and (pair? exp) (eq? (car exp) '**))) 

We are using '** as the symbol for exponent.

Next, (define (base exp)) and (define (exponent exp))

  (define (base exp) 
   (cadr exp)) 
   
  (define (exponent exp) 
   (caddr exp)) 

All that is left is to (define (make-exponentiation base exp)).

 (define (make-exponentiation base exp) 
   (cond ((=number? base 1) 1) 
         ((=number? exp 1) base) 
         ((=number? exp 0) 1) 
         (else  
          (list '** base exp)))) 

meteorgan

The above solution works. but in the end product, there is no need to check the exponent is number or not, procedure make-sum can do that. so the end product can be like this:

 (define (deriv expr var) 
   (cond ((number? expr) 0) 
         ((variable? expr) 
          (if (same-variable? expr var) 1 0)) 
         ((sum? expr)  
          (make-sum (deriv (addend expr) var) 
                    (deriv (augend expr) var))) 
         ((product? expr)  
          (make-sum 
            (make-product (multiplier expr) 
                          (deriv (multiplicand expr) var)) 
            (make-product (multiplicand expr) 
                          (deriv (multiplier expr) var)))) 
          ((exponentiation? expr)  
                          (make-product  
                            (make-product  
                              (exponent expr) 
                              (make-exponentiation (base expr) 
                              (make-sum (exponent expr) -1)))                                                                                                 
                            (deriv (base expr) var))) 
         (else (error "unkown expression type -- DERIV" expr))))